# Nash equilibria of generalized games in normed spaces without upper semicontinuity 

Paolo Cubiotti • Jen-Chih Yao

Received: 5 May 2009 / Accepted: 7 May 2009 / Published online: 24 May 2009
© Springer Science+Business Media, LLC. 2009


#### Abstract

The aim of this paper is to prove an existence theorem for the Nash equilibria of a noncooperative generalized game with infinite-dimensional strategy spaces. The main peculiarity of this result is the absence of upper semicontinuity assumptions on the constraint multifunctions. Our result is in the same spirit of the paper Cubiotti (J Game Theory 26: 267-273, 1997), where only the case of finite-dimensional strategy spaces was considered.


Keywords Noncooperative generalized game • Nash equilibria • Multifunctions •
Upper semicontinuity

## 1 Introduction

Let $I=\{1, \ldots, N\}$ be a set of $N$ players. Let each player $i \in I$ be endowed with a nonempty strategy space $X_{i}$, a utility function $p_{i}: X \rightarrow \mathbb{R}$ and a constraint multifunction $F_{i}: X_{-i} \rightarrow 2^{X_{i}}$, where we put

$$
X:=\prod_{i=1}^{N} X_{i}, \quad X_{-i}:=\prod_{\substack{j=1 \\ j \neq i}}^{N} X_{j} .
$$

The family of triples $\left\{\left(X_{i}, p_{i}, F_{i}\right)\right\}_{i \in I}$ is called a (non-cooperative) generalized game, or an abstract economy. In the sequel, we shall assume that each set $X_{i}$ is a nonempty subset of a real normed space $E_{i}$. The elements of the space $X$ are called multistrategies. If vectors $x_{i} \in X_{i}$ $(i \in I)$ are given, we shall denote by $x$ the multistrategy $x:=\left(x_{1}, \ldots, x_{N}\right) \in X$. Conversely,

[^0]if $x \in X$ is given, we shall denote by $x_{i}$ the $i$-th subvector of $x$ and by $x_{-i} \in X_{-i}$ the vector $x$ without its $i$-th subvector $x_{i}$. If $x \in X$ and $v_{i} \in X_{i}$, we shall denote by $\left(x_{-i}, v_{i}\right) \in X$ the vector $x$ with its $i$-th subvector $x_{i}$ being replaced by $v_{i}$.

Let $F: X \rightarrow 2^{X}$ be the multifunction defined by setting, for each $x \in X$,

$$
F(x):=\prod_{i=1}^{N} F_{i}\left(x_{-i}\right) .
$$

We recall that a vector $\hat{x} \in X$ is called a generalized Nash equilibrium for the game (see for instance $[1-3,9,10])$ if $x \in F(x)$ and for each $i \in I$ one has

$$
p_{i}\left(\hat{x}_{-i}, v_{i}\right)-p_{i}(\hat{x}) \leq 0 \quad \text { for all } \quad v_{i} \in F_{i}\left(\hat{x}_{-i}\right) .
$$

As known, each multifunction $F_{i}$ identifies the set of strategies for the player $i$ which are allowed by the the other players' choice. That is, once the other players' strategy $x_{-i}$ is given, the player $i$ can choose his strategy only in the set $F_{i}\left(x_{-i}\right)$, and not in the whole set $X_{i}$. Consequently, since the behaviour of the players is noncooperative, the aim of each player is to maximize his utility over the set $F_{i}\left(x_{-i}\right)$. Thus, a multistrategy $\hat{x} \in X$ is a generalized Nash equilibrium if it is feasible (that is, $\hat{x} \in F(\hat{x})$ ) and it is a no regret strategy for each player. That is, none of the players can unilaterally improve his utility by choosing a different strategy, given the constraints imposed on him by the other players' action.

When for each $i \in I$ one has $F_{i}\left(x_{-i}\right) \equiv X_{i}$ (that is, the strategy space of each player is not affected by the other players' stategy), then the notion of generalized Nash equilibrium reduces to the classical notion of Nash equilibrium for a noncooperative $N$-person game in standard form.

As remarked in [19] (see also [1,2,6,8-11,14-16]), the standard existence theorems for the generalized Nash equilibria typically require both the upper and the lower semicontinuity of the multifunctions $F_{i}$, together with the convexity and the closedness of their values. They also typically assume convexity and compactness of the strategy spaces $X_{i}$, continuity of the functions $p_{i}$, and concavity (or quasiconcavity) of each $p_{i}$ with respect to the $i$-th strategy $x_{i}$.

Recently, in the paper [3], some results were proved in the setting of finite-dimensional spaces $E_{i}$ (both for bounded and unbounded strategy spaces $X_{i}$ ), where the typical upper semicontinuity condition on the constraint multifunctions $F_{i}$ is not assumed. Indeed, such an assumption was replaced by the following more general condition: the feasible set

$$
\{x \in X: x \in F(x)\}
$$

is closed. Moreover, some example where provided (to which we refer for a more detailed discussion) where such results apply. Here, we only recall that the upper semicontinuity and closed valuedness of each $F_{i}$, together with the compactness of each $X_{i}$, imply that the feasible set is closed (since the graph of $F$ is closed-see Theorems 7.3.14 and 7.1.15 of [12]), while the converse is not necessarily true.

We remark that the finite-dimensionality assumption in the paper [3] was a key tool. The aim of this note is to extend the results of [3] to the setting of infinite-dimensional normed spaces $E_{i}$. This will be made by an approximation argument which makes use, in particular, of the finite-dimensional results of [3] and of some technical results concerning lower semicontinuous multifunctions. The technique we use is similar to the one originally developped in [5].

The following is our result:

Theorem 1.1 Let $\left\{X_{i}, F_{i}, p_{i}\right\}_{i \in I}$ be an abstract economy. For each $i \in I$, let $K_{i}^{(1)}, K_{i}^{(2)} \subseteq$ $X_{i}$ be nonempty compact sets, with $K_{i}^{(1)} \subseteq K_{i}^{(2)}, K_{i}^{(2)}$ convex, and $K_{i}^{(1)}$ finite-dimensional, such that the following assumptions are satisfied:
(i) $X_{i}$ is a closed convex subset of the real normed space $E_{i}$;
(ii) $p_{i}$ is continuous;
(iii) for each $x_{-i} \in X_{-i}$, the function $p_{i}\left(x_{-i}, \cdot\right)$ is concave on $X_{i}$,
(iv) the multifunction $F_{i}: X_{-i} \rightarrow 2^{X_{i}}$ is Hausdorff lower semicontinuous with closed convex values;
(v) $\operatorname{int}_{\operatorname{aff}\left(X_{i}\right)}\left(F_{i}\left(x_{-i}\right)\right) \neq \emptyset$ for all $x_{-i} \in X_{-i}$;
(vi) $F_{i}\left(x_{-i}\right) \cap K_{i}^{(1)} \neq \emptyset$ for all $x_{-i} \in X_{-i}$.

Moreover, assume that:
(vii) the feasible set $\Delta:=\{x \in X: x \in F(x)\}$ is compactly closed;
(viii) for each $x \in \Delta \backslash\left[\prod_{i=1}^{N} K_{i}^{(2)}\right]$, one has

$$
\max _{i \in I} \sup _{y_{i} \in F_{i}\left(x_{-i}\right) \cap K_{i}^{(1)}}\left[p_{i}\left(x_{-i}, y_{i}\right)-p_{i}(x)\right]>0 .
$$

Then there exists a generalized Nash equilibrium for the game.
The proof of Theorem 1.1 will be given in Sect. 3, while in Sect. 2 we shall fix some notations and recall some definitions and preliminary results which will be useful in the sequel. Finally, in Sect.4, we shall discuss briefly about possible improvements of Theorem 1.1.

## 2 Preliminaries

For the basic facts about multifunctions, we refer to [12]. Here, for the reader's convenience, we only recall the following definitions. If $S$ and $Y$ are topological spaces and $\Phi: S \rightarrow 2^{Y}$ is a multifunction, we say that $\Phi$ is lower semicontinuous (resp., upper semicontinuous) at $x \in S$ if for each open set $A \subseteq Y$, with $\Phi(x) \cap A \neq \emptyset$ (resp., with $\Phi(x) \subseteq A$ ), the set $\Phi^{-}(A):=\{s \in S: \Phi(s) \cap A \neq \emptyset\}$ (resp., the set $\{s \in S: \Phi(s) \subseteq A\}$ ) is a neighborhood of $x$ in $S$. We say that $\Phi$ is lower (resp., upper) semicontinuous in $S$ if it is lower (resp., upper) semicontinuous at each point $x \in S$. The graph of $\Phi$ is the set $\{(s, y) \in S \times Y: y \in \Phi(s)\}$.

Let $\left(E,\|\cdot\|_{E}\right)$ be a real normed space. We say that a multifunction $\Phi: S \rightarrow 2^{E}$ is Hausdorff lower semicontinuous (resp., Hausdorff upper semicontinuous) at $x_{0} \in S$ if for each $\sigma>0$ there exists a neighborhood $W$ of $x_{0}$ in $S$ such that

$$
\begin{aligned}
& \Phi\left(x_{0}\right) \subseteq \Phi(x)+B_{\sigma} \text { for all } x \in W \\
& \text { (resp. } \quad \Phi(x) \subseteq \Phi\left(x_{0}\right)+B_{\sigma} \text { for all } x \in W \text { ), }
\end{aligned}
$$

where $B_{\sigma}$ denote the open ball in $E$ centered at the origin with radius $\sigma$. We say that $\Phi$ is Hausdorff lower (resp., Hausdorff upper) semicontinuous in $S$ if it is Hausdorff lower (resp., Hausdorff upper) semicontinuous at each point $x \in S$. It is easy to check $[12,18]$ that Hausdorff lower semicontinuity implies lower semicontinuity, and, conversely, upper semicontinuity implies Hausdorff upper semicontinuity. The converse implications are true if the values of $\Phi$ are nonempty and compact [12, Theorem 7.1.14].

Let $A \subseteq E$ be a nonempty set. We denote by $A$ ) the affine hull of the set $A$. If $A \subseteq C \subseteq E$, we denote by $\operatorname{int}_{C}(A)$ the interior of $A$ in $C$. Finally, we recall that the set $A \subseteq E$ is said to be compactly closed if its intersection with any compact subset of $E$ is closed.

The following result will be a fundamental tool in the sequel.

Proposition 2.1 (Proposition 2.5 of [4]). Let $S$ be a topological space, $\left(E,\|\cdot\|_{E}\right.$ ) a real normed space, $V$ an affine manifold of $E, \Phi: S \rightarrow 2^{V}$ an Hausdorff lower semicontinuous multifunction with nonempty closed convex values, and let $\bar{s} \in S, \bar{y} \in \operatorname{int}_{V}(\Phi(\bar{s}))$. Then, there exists a neighborhood $U$ of $\bar{s}$ in $S$ such that

$$
\bar{y} \in \operatorname{int}_{V}\left(\bigcap_{s \in U} \Phi(s)\right) .
$$

Let $\left\{\left(X_{i}, p_{i}, F_{i}\right)\right\}_{i \in I}$ be a generalized game, where each strategy space $X_{i}$ is a nonempty subset of the real normed space $\left(E_{i},\|\cdot\|_{E_{i}}\right)$. In the sequel of the paper, in order to make notations simpler, we shall write $\prod_{i \in I}$ instead of the more correct symbol $\prod_{i=1}^{N}$. If $i \in I$, $x_{i} \in E_{i}$, and $r>0$, we denote by $B_{i}\left(x_{i}, r\right)$ and $\bar{B}_{i}\left(x_{i}, r\right)$, respectively, the open ball and the closed ball in $E_{i}$ centered at $x_{i}$ with radius $r$. Moreover, if $0_{E_{i}}$ denotes the origin of the space $E_{i}$, we put

$$
\begin{aligned}
B_{i}(r) & :=B_{i}\left(0_{E_{i}}, r\right), \\
\bar{B}_{i}(r) & :=\bar{B}_{i}\left(0_{E_{i}}, r\right) .
\end{aligned}
$$

Finally, the product spaces

$$
E:=\prod_{i \in I} E_{i}, \quad E_{-i}:=\prod_{\substack{j \in I \\ j \neq i}} E_{j}
$$

will be considered with the product topologies, generated by the norms

$$
\|x\|_{E}=\max _{i \in I}\left\|x_{i}\right\|_{E_{i}}, \quad\left\|x_{-i}\right\|_{E_{-i}}=\max _{\substack{j \in I \\ j \neq i}}\left\|x_{j}\right\|_{E_{j}}
$$

## 3 The proof of Theorem 1.1

For each $i \in I$, let $V_{i}:=\operatorname{aff}(X i)$, and let $V_{i}^{0}$ be the linear subspace of $E_{i}$ corresponding to $V_{i}$ (of course, $V_{i}$ may not be closed in $E_{i}$ ). Following the notations of the previous sections, for each $i \in I$ we put

$$
K_{-i}^{(2)}:=\prod_{\substack{j \in I \\ j \neq i}} K_{j}^{(2)}, \quad V_{-i}:=\prod_{\substack{j \in I \\ j \neq i}} V_{j} .
$$

We also put

$$
K^{(2)}:=\prod_{i \in I} K_{i}^{(2)}
$$

From now on, for the reader's convenience, we shall divide the proof into steps.
Step 1- Fix $i \in I$. For each $z_{-i} \in K_{-i}^{(2)}$, since int $V_{i}\left(F_{i}\left(z_{-i}\right)\right) \neq \emptyset$ by assumption (v), choose any point

$$
u_{\left(z_{-i}\right)} \in \operatorname{int}_{V_{i}}\left(F_{i}\left(z_{-i}\right)\right) .
$$

By Proposition 2.1, for each $z_{-i} \in K_{-i}^{(2)}$ there exists an open bounded neighborhood $W_{z_{-i}}$ of $z_{-i}$ in $E_{-i}$ such that

$$
\begin{equation*}
u_{\left(z_{-i}\right)} \in \operatorname{int}_{V_{i}}\left(\bigcap_{v_{-i} \in W_{z_{-i}} \cap X_{-i}} F_{i}\left(v_{-i}\right)\right) \tag{1}
\end{equation*}
$$

Since $K_{-i}^{(2)}$ is compact, there exist vectors $z_{-i}^{(1)}, \ldots, z_{-i}^{\left(m_{i}\right)} \in K_{-i}^{(2)}$ such that

$$
\begin{equation*}
K_{-i}^{(2)} \subseteq \Omega_{(-i)}:=\bigcup_{j=1}^{m_{i}}\left[W_{z_{-i}^{(j)}} \cap V_{-i}\right] . \tag{2}
\end{equation*}
$$

Firstly we note that $\Omega_{(-i)}$ is open in $V_{-i}$ and bounded (note that $\Omega_{(-i)}$ is not necessarily a product). Therefore, since the set $V_{-i} \backslash \Omega_{(-i)}$ is nonempty and closed in $V_{-i}$, and $K_{-i}^{(2)}$ is compact, by (2) we get

$$
\begin{equation*}
\xi(i):=\inf _{a_{-i} \in K_{-i}^{(2)}} \inf _{v_{-i} \in V_{-i} \backslash \Omega_{(-i)}}\left\|a_{-i}-v_{-i}\right\|_{E_{-i}}>0 \tag{3}
\end{equation*}
$$

Step 2- Once the number $\xi(i)$ is constructed for each $i \in I$, we put

$$
\xi:=\min _{i \in I} \xi(i)
$$

For each $i \in I$, put

$$
\begin{equation*}
\Sigma_{i}:=K_{i}^{(2)}+\left[\bar{B}_{i}\left(\frac{\xi}{2}\right) \cap V_{i}^{0}\right] . \tag{4}
\end{equation*}
$$

It is easily seen that each $\Sigma_{i}$ is convex and closed in $V_{i}$, and it is also bounded. Moreover, it follows by (3) that for each $i \in I$ one has also

$$
\Sigma_{-i}:=\prod_{\substack{j \in I \\ j \neq i}} \Sigma_{j} \subseteq \Omega_{(-i)} .
$$

Step 3- For each $i \in I$, define $\mathcal{F}_{i}$ as the family of all finite-dimensional subspaces of $E_{i}$ containing the set

$$
K_{i}^{(1)} \cup\left\{u_{\left(z_{-i}\right)}^{(1)}, \ldots, u_{\left(z_{-i}\right)}^{\left(m_{i}\right)}\right\} .
$$

Fix

$$
S_{1} \in \mathcal{F}_{1}, \quad \ldots, \quad S_{N} \in \mathcal{F}_{N},
$$

and let

$$
S:=S_{1} \times \cdots \times S_{N} .
$$

For each $i \in I$, define

$$
X_{i}^{S}:=\overline{X_{i} \cap \Sigma_{i} \cap S_{i}} .
$$

Observe that, for each $i \in I$, one has

$$
K_{i}^{(1)} \subseteq X_{i} \cap \Sigma_{i} \cap S_{i} \subseteq X_{i}^{S} \subseteq X_{i} \cap S_{i} .
$$

In particular, $X_{i}^{S} \neq \emptyset$.

Step 4- For each $i \in I$, let

$$
X_{-i}^{S}:=\prod_{\substack{j \in I \\ j \neq i}} X_{j}^{S}
$$

and let $F_{i}^{S}: X_{-i}^{S} \rightarrow 2^{X_{i}^{S}}$ be the multifunction defined by setting, for each $x_{-i} \in X_{-i}^{S}$,

$$
F_{i}^{S}\left(x_{-i}\right):=F_{i}\left(x_{-i}\right) \cap X_{i}^{S}=F_{i}\left(x_{-i}\right) \cap \overline{X_{i} \cap \Sigma_{i} \cap S_{i}} .
$$

At this point, our aim is to apply Theorem 2.2 of [3] to the generalized game

$$
\begin{equation*}
\left\{X_{i}^{S}, F_{i}^{S},\left.p_{i}\right|_{X^{S} \times X^{S}}\right\}_{i \in I}, \tag{5}
\end{equation*}
$$

where, as usual, we put $X^{S}:=\prod_{i \in I} X_{i}$. To this aim, we observe the following facts.
(a) For each $i \in I$, the set $X_{i}^{S}$ is a nonempty closed convex subset of $S_{i}$. Moreover, each $X_{i}^{S}$ is bounded (and finite-dimensional), hence compact.
(b) For each $i \in I$, the multifunction $F_{i}^{S}: X_{-i}^{S} \rightarrow 2^{X_{i}^{S}}$ has nonempty convex values by (iv) and (vi) (since $K_{i}^{(1)} \subseteq X_{i}^{S}$ ).
(c) The feasible set of the game (5) is closed. Indeed, if for each $x \in X^{S}$ we put

$$
F^{S}(x):=\prod_{i \in I} F_{i}^{S}\left(x_{-i}\right)=F(x) \cap X^{S},
$$

then the feasible set of the game (5) is the set

$$
\Delta_{S}:=\left\{x \in X^{S}: x \in F^{S}(x)\right\}=\Delta \cap X^{S},
$$

which is closed by assumption (vii).
(d) For each $i \in I$, the multifunction $F_{i}^{S}: X_{-i}^{S} \rightarrow 2^{X_{i}^{S}}$ is lower semicontinuous. To see this, fix $i \in I$ (recall that $S$ is fixed).

Firstly, we prove that

$$
\begin{equation*}
\Sigma_{i} \cap S_{i} \cap \operatorname{int}_{V_{i}} F_{i}\left(x_{-i}\right) \neq \emptyset \quad \text { for all } \quad x_{-i} \in X_{-i}^{S} . \tag{6}
\end{equation*}
$$

To prove (6), choose $x_{-i} \in X_{-i}^{S}$. For each $j \in I$, with $j \neq i$, let $x_{j}^{*} \in X_{j} \cap \Sigma_{j} \cap S_{j}$ such that $\left\|x_{j}-x_{j}^{*}\right\|_{E_{j}} \leq \xi / 4$.

Hence, we can consider the point

$$
x_{-i}^{*} \in \prod_{\substack{j \in I \\ j \neq i}}\left(X_{j} \cap S_{j} \cap \Sigma_{j}\right) \subseteq X_{-i}^{S} .
$$

Note that

$$
x_{j}-x_{j}^{*} \in V_{j}^{0}, \quad \text { for all } j \in I, \quad \text { with } \quad j \neq i .
$$

Since by (4) we have

$$
x_{j}^{*} \in K_{j}^{(2)}+\left[\bar{B}_{j}\left(\frac{\xi}{2}\right) \cap V_{j}^{0}\right] \quad \text { for all } \quad j \in I, \quad j \neq i,
$$

it follows that

$$
x_{j} \in K_{j}^{(2)}+\left[\bar{B}_{j}\left(\frac{3 \xi}{4}\right) \cap V_{j}^{0}\right] \quad \text { for all } \quad j \in I, \quad j \neq i,
$$

hence by (3) we get

$$
x_{-i} \in \Omega_{(-i)} .
$$

Consequently, by (2), there exists $k \in\left\{1, \ldots, m_{i}\right\}$ such that

$$
x_{-i} \in W_{z_{-i}}^{(k)} \cap V_{-i} .
$$

By (1), we get in particular that $u_{z_{-i}^{(k)}} \in \operatorname{int}_{V_{i}}\left(F_{i}\left(x_{-i}\right)\right)$, hence

$$
u_{z_{-i}^{(k)}}^{(k)} \in S_{i} \cap \operatorname{int}_{V_{i}}\left(F_{i}\left(x_{-i}\right)\right) \neq \emptyset .
$$

By assumption (vi) we have $F_{i}\left(x_{-i}\right) \cap K_{i}^{(1)} \neq \emptyset$. Fix any point $v_{i} \in F_{i}\left(x_{-i}\right) \cap K_{i}^{(1)}$ (of course, $v_{i} \in S_{i}$ since $\left.K_{i}^{(1)} \subseteq S_{i}\right)$. The convexity of $F_{i}\left(x_{-i}\right)$ implies that

$$
\begin{equation*}
\left.\left.v_{i}+t\left(u_{z_{-i}^{(k)}}-v_{i}\right) \in S_{i} \cap \operatorname{int}_{V_{i}}\left(F_{i}\left(x_{-i}\right)\right) \quad \text { for all } t \in\right] 0,1\right] . \tag{7}
\end{equation*}
$$

On the other hand, since $K_{i}^{(1)} \subseteq K_{i}^{(2)}$, by (4) we have

$$
v_{i}+\left[\bar{B}_{i}\left(\frac{\xi}{2}\right) \cap V_{i}^{0}\right] \subseteq \Sigma_{i} .
$$

Consequently, we can find $\alpha \in] 0,1]$ such that

$$
\begin{equation*}
\left.v_{i}+t\left(u_{z_{-i}^{(k)}}-v_{i}\right) \in \Sigma_{i} \text { for all } t \in\right] 0, \alpha[. \tag{8}
\end{equation*}
$$

In particular, by (7) and (8) we have

$$
S_{i} \cap \Sigma_{i} \cap \operatorname{int}_{V_{i}}\left(F_{i}\left(x_{-i}\right)\right) \neq \emptyset,
$$

as desired. Thus, (6) is now proved. At this point we can prove that $F_{i}^{S}$ is lower semicontinuous over $X_{-i}^{S}$. To this aim, let $\tilde{x}_{-i} \in X_{-i}^{S}$ and let $A_{i}$ be an open set in $V_{i}$ such that

$$
F_{i}^{S}\left(\tilde{x}_{-i}\right) \cap A_{i} \neq \emptyset .
$$

By (6) we have that

$$
\Sigma_{i} \cap S_{i} \cap \operatorname{int}_{V_{i}}\left(F_{i}\left(\tilde{x}_{-i}\right)\right) \neq \emptyset .
$$

Consequently, there exists a point

$$
w_{i} \in \Sigma_{i} \cap S_{i} \cap \operatorname{int}_{V_{i}}\left(F_{i}\left(\tilde{x}_{-i}\right)\right) \subseteq F_{i}^{S}\left(\tilde{x}_{-i}\right) .
$$

Choose a point $\tilde{v}_{i} \in F_{i}^{S}\left(\tilde{x}_{-i}\right) \cap A_{i}$. Since the set $F_{i}\left(\tilde{x}_{-i}\right)$ is convex, we have that

$$
\begin{equation*}
\left.\left.\tilde{v}_{i}+\lambda\left(w_{i}-\tilde{v}_{i}\right) \in X_{i}^{S} \cap \operatorname{int}_{V_{i}}\left(F_{i}\left(\tilde{x}_{-i}\right)\right) \text { for all } \lambda \in\right] 0,1\right] . \tag{9}
\end{equation*}
$$

On the other hand, since $A_{i}$ is open in $V_{i}$, there exists $\mu>0$ such that

$$
\begin{equation*}
\tilde{v}_{i}+\left[B_{i}(\mu) \cap V_{i}^{0}\right] \subseteq A_{i} . \tag{10}
\end{equation*}
$$

Consequently, by (9) and (10), there exists $\delta \in] 0,1]$ such that

$$
\begin{equation*}
\tilde{v}_{i}+\delta\left(w_{i}-\tilde{v}_{i}\right) \in X_{i}^{S} \cap A_{i} \cap \operatorname{int}_{V_{i}}\left(F_{i}\left(\tilde{x}_{-i}\right)\right) . \tag{11}
\end{equation*}
$$

By Proposition 2.1, there is a neighborhood $Z_{(-i)}$ of $\tilde{x}_{-i}$ in $X_{-i}$ such that

$$
\begin{equation*}
\tilde{v}_{i}+\delta\left(w_{i}-\tilde{v}_{i}\right) \in \operatorname{int}_{V_{i}}\left(\bigcap_{u_{-i} \in Z_{(-i)}} F_{i}\left(u_{-i}\right)\right) . \tag{12}
\end{equation*}
$$

By (11) and (12), we get

$$
\tilde{v}_{i}+\delta\left(w_{i}-\tilde{v}_{i}\right) \in X_{i}^{S} \cap A_{i} \cap \operatorname{int}_{V_{i}}\left(F_{i}\left(u_{-i}\right)\right) \text { for all } u_{-i} \in Z_{(-i)},
$$

hence, in particular,

$$
F_{i}\left(u_{-i}\right) \cap A_{i} \cap X_{i}^{S} \neq \emptyset \text { for all } u_{-i} \in Z_{(-i)},
$$

and thus

$$
F_{i}^{S}\left(u_{-i}\right) \cap A_{i} \neq \emptyset \text { for all } u_{-i} \in Z_{(-i)} \cap X_{-i}^{S} \text {, }
$$

as desired.
Consequently, by Theorem 2.2 of [3], there exists $x^{S} \in X^{S}$ such that $x^{S} \in F^{S}\left(x^{S}\right)$ and for each $i \in I$ one has

$$
\begin{equation*}
p_{i}\left(x_{-i}^{S}, y_{i}\right)-p_{i}\left(x^{S}\right) \leq 0 \quad \text { for all } \quad y_{i} \in F_{i}^{S}\left(x_{-i}^{S}\right) \tag{13}
\end{equation*}
$$

By (13) and assumption (viii), taking into account that $x^{S} \in \Delta$ and $K_{i}^{(1)} \subseteq X_{i}^{S}$ for all $i \in I$, we have that $x^{S} \in K^{(2)}$. We now prove that for each $i \in I$ one has

$$
\begin{equation*}
p_{i}\left(x_{-i}^{S}, y_{i}\right)-p_{i}\left(x^{S}\right) \leq 0 \quad \text { for all } \quad y_{i} \in F_{i}\left(x_{-i}^{S}\right) \cap S_{i} . \tag{14}
\end{equation*}
$$

To this aim, fix $i \in I$ and $y_{i} \in F_{i}\left(x_{-i}^{S}\right) \cap S_{i}$. Since

$$
\begin{aligned}
& x_{i}^{S} \in K_{i}^{(2)} \subseteq X_{i} \subseteq V_{i}, \\
& y_{i} \in F_{i}\left(x_{-i}^{S}\right) \subseteq X_{i} \subseteq V_{i}, \\
& V_{i}-V_{i} \subseteq V_{i}^{0},
\end{aligned}
$$

and $X_{i}$ is convex, we have that

$$
x_{i}^{S}+t\left(y_{i}-x_{i}^{S}\right) \in X_{i} \cap\left[K_{i}^{(2)}+\left(B_{i}\left(\frac{\xi}{2}\right) \cap V_{i}^{0}\right)\right]=X_{i} \cap \Sigma_{i}
$$

for a sufficiently small $t \in] 0,1\left[\right.$. Hence, by the convexity of $F_{i}\left(x_{-i}^{S}\right)$ and by the definition of $X_{i}^{S}$, we have

$$
x_{i}^{S}+t\left(y_{i}-x_{i}^{S}\right) \in X_{i} \cap \Sigma_{i} \cap S_{i} \cap F_{i}\left(x_{-i}^{S}\right) \subseteq X_{i}^{S} \cap F_{i}\left(x_{-i}^{S}\right)=F_{i}^{S}\left(x_{-i}^{S}\right) .
$$

By (13) and assumption (iii), we get

$$
\begin{aligned}
0 & \geq p_{i}\left(x_{-i}^{S}, x_{i}^{S}+t\left(y_{i}-x_{i}^{S}\right)\right)-p_{i}\left(x^{S}\right) \\
& \geq(1-t) p_{i}\left(x^{S}\right)+t p_{i}\left(x_{-i}^{S}, y_{i}\right)-p_{i}\left(x^{S}\right) \\
& =t\left[p_{i}\left(x_{-i}^{S}, y_{i}\right)-p_{i}\left(x^{S}\right)\right],
\end{aligned}
$$

hence $p_{i}\left(x_{-i}^{S}, y_{i}\right)-p_{i}\left(x^{S}\right) \leq 0$, as desired.

Step 5- Resuming, we have proved that, if one fixes

$$
S_{1} \in \mathcal{F}_{1}, \quad \ldots, \quad S_{N} \in \mathcal{F}_{N},
$$

and puts

$$
S=S_{1} \times \cdots \times S_{N},
$$

then there exists a point $x^{S} \in K^{(2)} \cap S \cap \Delta$ such that for each $i \in I$ the relation (14) holds.
Now, let $\mathcal{F}$ be the family of all linear subspaces $S$ of $E$ of the type

$$
S=S_{1} \times \cdots \times S_{N}, \quad \text { with } \quad S_{i} \in \mathcal{F}_{i} .
$$

Let us consider the net $\left\{x^{S}\right\}_{S \in \mathcal{F}}$, with $\mathcal{F}$ ordered by the ordinary set inclusion. The compactness of $K^{(2)}$ implies that the net $\left\{x^{S}\right\}_{S \in \mathcal{F}}$ has a cluster point $\hat{x} \in K^{(2)}$. Since by assumption (vii) the set $\Delta \cap K^{(2)}$ is closed, we get $\hat{x} \in F(\hat{x})$. We now claim that for each $i \in I$ one has

$$
\begin{equation*}
p_{i}\left(\hat{x}_{-i}, y_{i}\right)-p_{i}(\hat{x}) \leq 0 \quad \text { for all } y_{i} \in \operatorname{int}_{V_{i}}\left(F_{i}\left(\hat{x}_{-i}\right)\right) . \tag{15}
\end{equation*}
$$

Arguing by contradiction, assume that there exist $i \in I$ and $\tilde{y}_{i} \in \operatorname{int}_{V_{i}}\left(F_{i}\left(\hat{x}_{-i}\right)\right.$ ) (which is nonempty by assumption (v)) such that

$$
\begin{equation*}
p_{i}\left(\hat{x}_{-i}, \tilde{y}_{i}\right)-p_{i}(\hat{x})>0 . \tag{16}
\end{equation*}
$$

By Proposition 2.1, there exist numbers $\sigma_{j}>0$, with $j \in I, j \neq i$, such that

$$
\begin{equation*}
\tilde{y}_{i} \in \operatorname{int}_{V_{i}}\left(\bigcap_{x_{-i} \in\left(\prod_{j \in I, j \neq i} B_{j}\left(\hat{x}_{j}, \sigma_{j}\right)\right) \cap X_{-i}} F_{i}\left(x_{-i}\right)\right) . \tag{17}
\end{equation*}
$$

By (16) and assumption (ii), since the set

$$
\left\{x \in X: p_{i}\left(x_{-i}, \tilde{y}_{i}\right)-p_{i}(x)>0\right\}
$$

is open in $X$, there exist numbers $\lambda_{1}, \ldots, \lambda_{N}>0$, with $\lambda_{j}<\sigma_{j}$ for $j \neq i$, such that

$$
\begin{equation*}
X \cap\left[\prod_{j=1}^{N} B_{j}\left(\hat{x}_{j}, \lambda_{j}\right)\right] \subseteq\left\{x \in X: p_{i}\left(x_{-i}, \tilde{y}_{i}\right)-p_{i}(x)>0\right\} . \tag{18}
\end{equation*}
$$

By construction, there exists

$$
\hat{S}=\hat{S}_{1} \times \cdots \times \hat{S}_{N} \in \mathcal{F}
$$

such that

$$
\tilde{y}_{i} \in \hat{S}_{i} \quad \text { and } \quad x^{\hat{S}} \in \prod_{j=1}^{N} B_{j}\left(\hat{x}_{j}, \lambda_{j}\right) .
$$

By (17) we get

$$
\tilde{y}_{i} \in\left[\operatorname{int}_{V_{i}} F_{i}\left(x_{-i}^{\hat{S}}\right)\right] \cap \hat{S}_{i} \subseteq F_{i}\left(x_{-i}^{\hat{S}}\right) \cap \hat{S}_{i} .
$$

Consequently, (14) implies that

$$
\begin{equation*}
p_{i}\left(x_{-i}^{\hat{S}}, \tilde{y}_{i}\right)-p_{i}\left(x^{\hat{S}}\right) \leq 0 . \tag{19}
\end{equation*}
$$

On the other hand, (18) implies that

$$
p_{i}\left(x_{-i}^{\hat{S}}, \tilde{y}_{i}\right)-p_{i}\left(x^{\hat{S}}\right)>0,
$$

which contradicts (19). Such a contradiction proves that (15) holds. At this point, by the convexity of each $F_{i}\left(\hat{x}_{-i}\right)(i \in I)$ and the continuity of each $p_{i}$ the conclusion follows at once. The proof is now complete.

## 4 Final remarks

We now give some comments about the statement of Theorem 1.1 and possible improvements of it.
(a) Firstly, we observe that is not strictly necessary to assume the convexity of each set $K_{i}^{(2)}$. Indeed, in the proof of Theorem 1.1, each set $K_{i}^{(2)}$ can be replaced by its closed convex hull $\overline{c o} K_{i}^{(2)}$, provided that the last set is compact. Consequently, the convexity assumption on each set $K_{i}^{(2)}$ in the statement of Theorem 1.1 can be replaced by the assumption that the set $\overline{c o} K_{i}^{(2)}$ is compact. This happens, for instance, if the space $E_{i}$ is a Banach space (see Theorem 6 at p. 416 of [7]).
(b) Theorem 1.1 is a partial extension of Theorems 2.2 and 2.3 of [3] (note that when each space $E_{i}$ is finite-dimensional one can take $K_{i}^{(1)}=K_{i}^{(2)}$ ). In particular, when the sets $X_{i}$ are finite-dimensional and compact, and $F_{i}\left(x_{-i}\right) \equiv X_{i}$, Theorem 1.1 gives back the classical Nash existence theorem [2,14,15] (recall that each nonempty finite-dimensional convex set has nonempty interior in its affine hull).
(c) As regards possible improvements of Theorem 1.1, a first question could be: can the Hausdorff lower semicontinuity of the multifunctions $F_{i}$ be replaced by the usual lower semicontinuity? In this connection, we point out that, in general, in infinite-dimensional setting, a lower semicontinuous multifunction has not the property described by Proposition 2.1, even if $E$ is an Hilbert space (see Remark 1.1 of [13]). Moreover, one could ask if the finite-dimensional assumption on the sets $K_{i}^{(1)}$ can be dropped (and, consequently, one could take $K_{i}^{(1)}=K_{i}^{(2)}$ ). Our feeling is that it is not easy to give answers to these questions. In particular, as far as we know, the last problem has been unsuccessfully investigated by several mathematicians in the last years with respect to the variational inequality existence results proved in the papers [5,17].

## References

1. Aubin, J.P.: Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam (1979)
2. Aubin, J.P.: Optima and Equilibria. Springer, Berlin (1993)
3. Cubiotti, P.: Existence of Nash equilibria for generalized games without upper semicontinuity. Internat. J. Game Theory 26, 267-273 (1997)
4. Cubiotti, P.: On the discontinuous infinite-dimensional generalized quasivariational inequality problem. J. Optim. Theory Appl. 115, 97-111 (2002)
5. Cubiotti, P., Yen, N.D.: A result related to Ricceri's conjecture on generalized quasi-variational inequalities. Archiv der Mathematik 69, 507-514 (1997)
6. Debreu, G.: A social equilibrium existence theorem. Proc. Nat. Acad. Sci. USA 38, 386-393 (1952)
7. Dunford, N., Schwartz, J.T.: Linear Operators, Part I, General theory. Wiley, New Jersey (1988)
8. Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points. Proc. Amer. Math. Soc. 38, 170-174 (1952)
9. Harker, P.T.: Generalized Nash games and quasi-variational inequalities. Euro. J. Oper. Res. 54, 81-94 (1991)
10. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161-220 (1990)
11. Ichiishi, T.: Game Theory for Economic Analysis. Academic Press, New York (1983)
12. Klein, E., Thompson, A.C.: Theory of Correspondences. Wiley, New York (1984)
13. Marano, S.A.: Controllability of partial differential inclusions depending on a parameter and distributedparameter control processes. Le Matematiche 45, 283-300 (1990)
14. Nash, J.: Equilibrium points in $N$-person games. Prot. Nat. Acad. Sci. USA 36, 48-49 (1950)
15. Nash, J.: Non-cooperative games. Ann. Math. 54, 286-295 (1951)
16. Nikaido, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 4, 65-72 (1955)
17. Ricceri, B.: Un théoreme d'existence pour les inéquations variationelles. C.R. Acad. Sci. Paris Sér. I Math. 301, 885-888 (1985)
18. Spakowski, A.: On approximation by step multifunctions. Comment. Math. 25, 363-371 (1985)
19. Tian, G., Zhou, J.: The maximum theorem and the existence of Nash equilibrium of (generalized) games without lower semicontinuity. J. Math. Anal. Appl. 166, 351-364 (1992)

[^0]:    P. Cubiotti

    Department of Mathematics, University of Messina, Contrada Papardo, Salita Sperone 31, 98166 Messina, Italy
    e-mail: cubiotti@dipmat.unime.it
    J.-C. Yao ( $\triangle$ )

    Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
    e-mail: yaojc@math.nsysu.edu.tw

